Search results for "high harmonic generation"

showing 10 items of 66 documents

Tuning the high-order harmonic lines of a Nd:Glass laser for soft x-ray laser seeding

2010

Taking advantage of the non-adiabatic blue-shift of high-order harmonics generated by a fixed frequency Nd:Glass laser system, we are able to report more than 50 % coverage of the XUV spectral range between 18 nm and 35 nm. The generated harmonic lines are capable of seeding Ni-like Y, Zr and Mo soft x-ray lasers and others.

Range (particle radiation)Materials sciencebusiness.industryNonlinear opticsLaserlaw.inventionOpticslawHarmonicsExtreme ultravioletHarmonicHigh harmonic generationSeedingbusinessSPIE Proceedings
researchProduct

Plasma emission at the laser tripled frequency

2003

The third harmonic generation in the skin-layer of a dense hot plasma due to inverse bremsstrahlung is investigated for regimes having increasing experimental relevance. New analytical dependencies of the radiation flux density at the frequency 3ω on the plasma and fundamental wave parameters are established.

PhysicsBremsstrahlungGeneral Physics and AstronomyInversePlasmaLaserElectromagnetic radiationlaw.inventionRadiation fluxPhysics::Plasma PhysicslawHigh harmonic generationThird harmonicAtomic physicsPhysics Letters A
researchProduct

Towards CEP stable sub two cycle IR pulse compression with bulk material

2010

We demonstrate both experimentally and numerically that self-steepening during propagation in a hollow-fiber followed by linear propagation through glass in the anomalous dispersion enables pulse compression down to 1.9 cycles at 1.8 micron wavelength.

Optical amplifierFemtosecond pulse shapingMaterials sciencebusiness.industryPhysics::OpticsSecond-harmonic generationAstrophysics::Cosmology and Extragalactic AstrophysicsWavelengthOpticsPulse compressionOptoelectronicsHigh harmonic generationHigh Energy Physics::ExperimentbusinessSelf-phase modulationBandwidth-limited pulseFrontiers in Optics 2010/Laser Science XXVI
researchProduct

Nanorings driven by a laser field

2013

We present the dynamics of an electron constrained over an 1D ring with radius of 0.142 nm driven by a laser field. The temporal evolution of the system is evaluated by a semi-analytical solution of the full quantum time dependent Schr¨odinger equation. In our calculation the gap energy between the ground and the first excited state of the nanoring is three times the photon energy laser (0.63 eV) and the laser intensity is 4·1014 W/cm2 . Our analysis is performed by considering different polarization states of the incident laser. Our attention is mainly focused on the study of the High Harmonic Generation (HHG), the energy and the angular momentum absorbed by the driven system. We observe 1…

quantum ring high harmonic generation laser field
researchProduct

The influence of the quantum nature of nuclei in high harmonic generation from H+2-like molecular ions

2013

We study the full quantum dynamics of a simple molecular ion driven by an intense laser field. In particular we show that the quantum nature of the nuclear dynamics affects the emitted high harmonic generation (HHG) spectra, strongly reshaping the plateau region. In fact, it is evident that the characteristic flat trend is transformed into a descending trend, with the lower harmonics being two orders of magnitude more intense than the higher harmonics. We show that this effect is more pronounced in the lighter isotopic species of H2+ molecular ions and we also demonstrate that in this case the contribution to HHG from the antibonding electronic energetic surface is of the same order of magn…

PhysicsField (physics)Quantum dynamicsCondensed Matter PhysicsAntibonding molecular orbitalIndustrial and Manufacturing EngineeringAtomic and Molecular Physics and OpticsIonHarmonicsHigh harmonic generationAtomic physicsInstrumentationQuantumOrder of magnitudeLaser Physics
researchProduct

Quantum Control in Atomic Systems

1999

We review a series of recent experiments demonstrating quantum control of atomic processes and products induced by the interaction of the atom with coherent bichromatic electromagnetic fields. Since the effects under consideration are electromagnetically induced, control is established through the field parameters i.e. frequency, amplitude and phase. The controlled processes include resonant and non resonant multiphoton ionization, autoionization, radiative decay in multiple continua (ionization branching ratios) and third harmonic generation.

Quantum technologyElectromagnetic fieldPhysicsOpen quantum systemAutoionizationIonizationQuantum sensorPhysics::Atomic and Molecular ClustersQuantum simulatorHigh harmonic generationPhysics::Atomic PhysicsAtomic physics
researchProduct

Laser driven quantum rings: one byte logic gate implementation

2018

We study the effect of the carrier-envelope-phase (CEP) on the high harmonic generation (HHG) from a quantum ring driven by two short orthogonal lasers polarized along the x and y axes. In particular, by varying only the phase of the laser polarized along y it is possible to control the intensity of the emitted harmonics. In fact, we show that the system can efficiently emit harmonics if the laser polarized along y is small and that the cut-off of the spectra can be controlled by changing the phase or the intensity ratio between the two lasers. The wavelet analysis of the emitted harmonics and the time dependence of the angular momentum and of the energy acquired by the electron show that t…

PhysicsAngular momentumbusiness.industryGeneral Chemical EngineeringChemistry (all)Phase (waves)General ChemistryElectronLaser01 natural scienceslaw.invention010309 opticsOpticslawHarmonicsLogic gate0103 physical sciencesHigh harmonic generationChemical Engineering (all)Chemistry (all); Chemical Engineering (all)010306 general physicsbusinessComputer technologyRSC Advances
researchProduct

Monte Carlo simulation of high‐order harmonics generation in bulk semiconductors and submicron structures

2004

To qualify the feasibility of standard semiconductor materials and Schottky‐barrier diodes (SBDs) for THz high‐order harmonic generation and extraction, the harmonic intensity, intrinsic noise and signal‐to‐noise ratio are calculated by the Monte Carlo method when a periodic high‐frequency large‐amplitude external signal is applied to a semiconductor device. Due to very high signal‐to‐noise ratio heavily doped GaAs SBDs are found to exhibit conditions for frequency mixing and harmonic extraction that are definitively superior to those of bulk materials. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

EFFICIENCYDEVICESMaterials scienceINPMonte Carlo methodAnalytical chemistry02 engineering and technologySCHOTTKY-BARRIER DIODES01 natural sciencesNoise (electronics)NOISECondensed Matter::Materials Science0103 physical sciencesHigh harmonic generationTHZSILICONELECTRON-TRANSPORTDiode010302 applied physicsbusiness.industryGAASDopingSemiconductor device021001 nanoscience & nanotechnology[SPI.TRON]Engineering Sciences [physics]/ElectronicsHarmonicsHarmonicRADIATIONOptoelectronics0210 nano-technologybusinessphysica status solidi (c)
researchProduct

Wavelet analysis and HHG in nanorings: their applica-tions in logic gates and memory mass devices

2015

We study the application of one nanoring driven by a laser field in different states of polarization in logic circuits. In particular we show that assigning Boolean values to different states of the incident laser field and to the emitted signals, we can create logic gates such as OR, XOR and AND. We also show the possibility of making logic circuits such as half-adder and full-adder using one and two nanorings respectively. Using two nanorings we made the Toffoli gate. Finally we use the final angular momentum acquired by the electron to store information and hence show the possibility of using an array of nanorings as a mass memory device.

Angular momentumFOS: Physical sciencesToffoli gate02 engineering and technologyElectronTopology01 natural scienceslaw.inventionWaveletlaw0103 physical sciencesGeneral Materials Science010306 general physicsPhysicsQuantum Physics021001 nanoscience & nanotechnologyPolarization (waves)LaserLogic gateLogic gate quantum information nanoring quantum ring laser interaction wavelet high harmonic generationMaterials Science (all)0210 nano-technologyQuantum Physics (quant-ph)NanoringPhysics - OpticsHardware_LOGICDESIGNOptics (physics.optics)
researchProduct

Modeling harmonic generation by a degenerate two-level atom

1996

An analytical theory of the generation of high-order harmonics of laser radiation has been developed on the basis of a two-level model atom with degenerate levels. Among other parameters, onset, width, and cutoff of the plateau in the harmonic spectrum are obtained in simple analytical forms that connect the basic problem parameters and permit a transparent interpretation of the mechanism underlying the spectrum formation for this specific case. Selected numerical calculations are reported to corroborate the analytical findings and to investigate other harmonic-spectrum features.

PhysicsHarmonic spectrumPhotonBasis (linear algebra)Numerical analysisQuantum mechanicsHarmonicsAtomDegenerate energy levelsHigh harmonic generationStatistical and Nonlinear PhysicsAtomic and Molecular Physics and OpticsJournal of the Optical Society of America B
researchProduct